Applications of Raman Spectroscopy
Applications of Raman Spectroscopy
Raman spectroscopy is a powerful analytical technique that provides insights into the molecular composition and structure of materials. Raman spectroscopy relies on the interaction between photons and molecular vibrations. When a sample is exposed to monochromatic light, most photons undergo elastic scattering, where their energy remains unchanged. However, a small fraction of photons interacts with the sample’s molecules and undergoes inelastic scattering, known as Raman scattering. This process involves energy exchange between the photons and the molecular vibrations, resulting in energy shifts that correspond to specific vibrational modes.
To perform Raman spectroscopy, a laser beam is directed onto a sample, and the scattered light is collected and analyzed. The Raman scattering spectrum is obtained by measuring the energy shifts of the scattered photons relative to the incident photons. This spectrum provides valuable information about the vibrational modes of the sample molecules, which is highly characteristic of its chemical composition and molecular structure.
Raman spectroscopy is a highly potent tool as it offers a non-destructive, highly informative approach for analyzing the molecular compositions and structures of a wide range of materials. Its versatility and applicability across various scientific disciplines make it a valuable tool for researchers, scientists, and industrial professionals alike. Examples of Raman spectroscopy’s applications include: